				CVNG 3010 Structura
	What do the program faculty expect all students to know or be able to do as a result of completing this programetc.).		 What process will be used to evaluate What artifacts of student learning will be used to determine if students have achieved thirtied8 (8 .16 7i.68 0.9 	CVNG 3040 Sustaina
			CVNG 3010 – Exam question on the Force Method and Virtual Work CVNG 3040 – Graded assignment on stoichiometry CVNG 3110 – Graded assignment on geometric roadway design CVNG 3130 – Final exam question on backwater modeling	The assessment of student outcomes incorporates a six-step cyclic process as described on page 4: 1) Outcomes Assessment, 2) Assessment Results, 3) Faculty Review, 4) Assessment Retreat, 5) Plan of Action, and 6) Implement Plan of Action.
I	An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.	CVNG 3040 Sustainability and Env. Eng. () CVNG 3120 Transportation Engineering Lab () CVNG 3160 Intro to Structural Eng. Lab () CVNG 4500 Capstone Design I (A)	CVNG 3040 – Assignment on water quality for human consumption CVNG 3120 – Evaluation and assessment of traffic improvement lab CVNG 3160 – Reinforced concrete frame project CVNG 4500 – Capstone preliminary design alternatives project report	Same as above

	An ability to communicate effectively with a range of audiences.	CVNG 3020 Structural Analysis (R) CVNG 3140 Hydraulic Engineering (R) CVNG 4500 Capstone Design I (A) CVNG 4510 Capstone Design II (A)	CVNG 3020 – Final Project Oral Presentation and Report CVNG 3140 – Water Resources and Entrepreneurship Presentation CVNG 4500 – Capstone Preliminary Design Alternatives Project Presentation and Report CVNG 4510 – Capstone Final Design Project Presentation and Report	Same as above
I	An ability to recognize ethical and professional responsibilities in civil engineering situations and make informed judgements, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.	PHIL 3400 Engineering Ethics (I) CVNG 3040 Sustainability and Env. Eng. (I) CVNG 3120 Transportation Engineering Lab (R) CVNG 3140 Hydraulic Engineering Lab (R)	PHIL 3400 – Final overall grade CVNG 3040 –	

An ability to design a system, component, or process in more than one civil engineering context (e.g. construction, environmental, geotechnical, structural, transportation, water resources).CVNG 3110 Transportation Engineering (I/D) CVNG 3130 Hydraulic Engineering (I/D) CVNG 3150 Intro to Structural Design (I/D) CVNG 3150 Intro to Structural Design (I/D) CVNG 4510 Capstone Design I (A)CVNG 3110 - Combined homework on pavement design and long-range transportation planning CVNG 3130 - Exam questions focused on design of steel beams and columns CVNG 4510 - Capstone Final DesignSame as above	An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.	CVNG 4500 Capstone Design I (D) CVNG 4510 Capstone Design II (R)	CVNG 4500 – Assignment on Design Criteria CVNG 4510 – Assignment on pursuit of external resources not typically taught in classes	Same as above
	component, or process in more than one civil engineering context (e.g. construction, environmental, geotechnical, structural, transportation, water	CVNG 3130 Hydraulic Engineering (I/D) CVNG 3150 Intro to Structural Design (I/D)	pavement design and long-range transportation planning CVNG 3130 - Exam questions focused on culvert design CVNG 3150 - Exam questions focused on design of steel beams and columns	Same as above

An ability to explain basic concepts in management, business, public policy, and leadership.

CVNG 3040 Sustainability and Env. Eng. (I) CVNG 3070 Project Management (I/D) 1. How and when will analyzed data be used by program

2. How and when will the program faculty evaluate the impact of assessment-informed changes made in previous years?

The continuous improvement approach will maintain a review cycle involving a long-term feedback loop occurring every three years, while other assessment, such as outcome achievement, will be evaluated on a one-year cycle. Thus, data for changes made to the curriculum will include three-year data sets each review cycle moving forward. Fig. 1(a) shows the general review cycle for student outcomes and Fig. 1(b) shows a linear representation from the assessment at the course level, through the independent faculty review of a student outcome as a whole, concluding with the plan of action implementation.

(a) Fig. 1—(a) General anncu-0 0 11.04 84.16.9 (315 0 T (b) 012)0.001 Tw 0.902 (y)-7.5 (r)8.1 (e)-6a0.004 Tw 51

Dr. Carroll presented a sample of the CATME results from CVNG 3020 along with a draft rubric for teamwork loosely based on the AAC&U teamwork value rubric. The CATME results include scores in five different categories for each individual student along with peer comments.

- Two representative binders for Outcome 1 and Outcome 5 were presented to the Civil Engineering Program faculty. All student work used for assessment along with the actual assessment will be placed in each respective binder. The binder for each outcome will include a tab for each course from which the assessment was taken along with divisions for each academic year that materials were recorded and assessed. The outcome binders will be housed in the Civil Engineering Adjunct Office.
- The Civil Engineering Program faculty agreed to develop the rubrics for the assignments selected for assessment in their respective courses. The rubric development tasks are listed in Table 1. Dr. Luna volunteered to develop the General Written Communication rubric and Dr. Carroll volunteered to develop the Oral Communication rubric, both of which will be developed based on the corresponding AAC&U value rubrics. While those rubrics will be developed in their general form, they may need further modifications to align with a specific assignments in a specific course. Each capstone design advisor will complete the written communication rubric for their respective group and all faculty attending the Capstone presentations will complete the oral communication rubric for every group.

Adams	Carroll	Сох	Kianfar	Luna
Stoichiometry Assignment	Virtual work exam	Backwater modeling final	Exam question on simple	Assignment on project
(1)	question (1)	exam question (1)	frames or machines (1)	management (9)
Water quality assignment	Force method exam	Culvert design exam	Geometric roadway	Project management
(2)	question (1)	question (8)	design assignment (1)	exam question (9)
Term paper (4)	General Oral	Social justice	Pavement design & long-	Hydraulic conductivity of
	Communication (3)	presentation (4)	range trans. planning (8)	soils lab (6)
Term paper (9)	General Teamwork (5)	Pump characteristics	Eval. and assessment of	Consolidation lab with
		curves lab (6)	corridor traffic imp. (2)	proj. mang. focus (9)
Total carbonate and non-	Fiber-reinforced concrete		Transportation news	Capstone prelim. design
carbonate lab (6)	project (6)		project (4)	alt. project report (2)
	Steel beam design exam			General Written
	question (8)			Communication (3)
	Steel column design exam			Design criteria
	question (8)			assignment (7)
	Reinforced concrete frame			Pursuit of external
	project (2)			resources assignment (7)
				Capstone final design (8)

Note: number in parentheses corresponds to ABET outcome

1 – Does not meet expectations	2 – Meets expectations	3 – Exceeds expectations
Dimensions of clarifier was calculated incorrectly or with significant math errors.	Dimensions of clarifier calculated using correct procedure with only very minor math or unit errors.	Dimensions of clarifier calculated correctly.

Calculation of critical settling velocity was calculated incorrectly or with significant math errors.

Calculation of critical settling velocity was correct with only very minor math or unit errors.

CVNG 3040 – Sustainability and Environmental Engineering Final Exam Question on Water Quality for Human Consumption

1 – Does not meet expectations	2 – Meets expectations	3 – Exceeds expectations
Water hardness fractions were calculated incorrectly or with significant math errors.	Water hardness fractions were calculated with only very minor math or unit errors.	Water hardness fractions were calculated correctly or with only very minor math or unit errors.
Dosages of soda ash and lime calculated incorrectly or with significant math errors.	Dosages of soda ash and lime were calculated with only very minor math or unit errors.	Dosages of soda ash and lime were calculated correctly or with only very minor math or unit errors.

CVNG 3120 – Transportation Engineering Lab Evaluation and assessment of corridor traffic improvement lab

1 – Does not meet expectations2 – Meets expectationsStudents were able to propose,
model, and evaluate three
corridor traffic improvement
alternatives2 – Meets expectations

3 – Exceeds expectations

Students selected the preferred all the preferre

1 Dess net mest supertations		2 Eveneda evenestationa	1
1 – Does not meet expectations	2 – Meets expectations	3 – Exceeds expectations	1
The virtual work/force method	The virtual work/force method	The virtual work/force method	
calculations have significant	calculations are mostly correct	calculations are correct with	
errors (e.g. integration is	with only minor mistakes (e.g.	only minimal mistakes (e.g. unit	
blatantly incorrect) or steps in	unit errors, dimensional errors,	errors) and the process to	
the process are missing	wrong moment of inertia) but	calculate the cracking load is	
completely.	the cracking load is determined	correct using the results fro (s)9.5	loV3 (h)2.2 (V9 -1.217 Tc
	by setting cracking moment	5	
	equal PL/4 rather than using the		
	virtual work/force method		
The ultimate flexural strength	calculations.		
calculations have significant			
errors (e.g. Mn is wrong) or the			
nominal strength is calculated			
correctly but the ultimate	The ultimate load is predicted		
flexural strength is determined	incorrectly because of minor		
by setting the nominal flexural	errors (e.g. unit errors) in the		
strength equal to PL/4 rather	flexural strength calculations or		
than account for negative	shear calculations or the wrong		
moment capacity at the ends.	failure mechanism is selected.		
moment suparty at the ones.			

The shear calculations are missing or have significant errors.

CVNG 3020 – Structural Analysis Lab Final Project Oral Presentation (Oral Communication)

1 – Does not meet expectations	2 – Meets expectations	3 – Exceeds expectations
The presentation is not well		
organized (e.g. material out of		
order) and the supporting		
materials insufficiently supports		
the topic.		

The language choices are

1 – Does not meet expectations	2 – Meets expectations	3 – Exceeds expectations	
The presentation is not well	The presentation is organized	The presentation is very well	
organized (e.g. material out of	and the supporting materials	organized and the supporting	
order) and the supporting	make appropriate reference to	materials make reference to	
materials insufficiently supports	information that supports the	information that significantlydg64	353.28 696.96 Tm (Th)5
the topic.	topic. The language is		
	appropriate for the audience		
	and supports the topic. The		
	delivery techniques make the		
The language choices are	presentation interesting and the		
unclear and minimally support	speaker(s) appears comfortable.		
the topic. The delivery			
technique detracts from the			
understandability of the			
presentation and the speaker(s) appears uncomfortable.			
appears uncontrol table.			

The report is not well organized	The report is organized and	The report is very well
(e.g. sections out of order) and	mostly includes the necessary	organized and includes the
the necessary detail to describe	detail to describe the work	necessary detail to describe the
the work completed is lacking.	completed. The background	work completed. The
	theory is adequate, but relevant	background theory is adequate,
	source information may be	complete with relevant source
	lacking. The authors	information.
The authors demonstrate	demonstrate awareness of	
minimal attention to context	context and purpose. The	
and purpose. The language	language is clear and the writing	
sometimes impedes the	contains few grammatical	The authors demonstrate a
meaning because of errors in	errors.	thorough understanding of
usage.		context and purpose. The
		language is clear and the writing
		is virtually error-free.

CVNG 4510 – Capstone Design II Capstone Final Design Project Presentation (Oral Communication)

CVNG 3040 – Sustainability and Environmental Engineering Final Exam Question on Climate Change

1 – Does not meet expectations 2 – Meets expectations

1 – Does not meet expectations	2 – Meets expectations	3 – Exceeds expectations
Lacks detail of the social justice	Details the social justice issue	Details the social justice issue
issue from a local perspective	from a local perspective related	from a local perspective related
related to their assigned	to their assigned viewpoint (i.e.,	to their assigned viewpoint (i.e.,
viewpoint (i.e., activate levee to	activate levee to protect	activate levee to protect
protect citizens of Cairo or not	citizens of Cairo or not activate	citizens of Cairo or not activate
activate levee to protect	levee to protect farmland).	levee to protect farmland).
farmland).		
,		
	Provides some historical context	Provides appropriate historical
Lacks historical context and	and relevant policies.	context and relevant policies.
relevant policies.		
	Identifies the impact of inequity	Identifies the impact of inequity
Does not recognize the impact	from the assigned viewpoint.	from the assigned viewpoint.
of inequity from the assigned		nom the assigned viewpoint.
viewpoint.		
		Highlights the balance between
		economic, environment and
		societal needs

CVNG 4510 – Capstone Design II Capstone Final Design

The student group conducted a	The student group conducted a	The student group conducted a
compaction laboratory	compaction laboratory	compaction laboratory
experiment, but did not relate	experiment to meet engineering	experiment to meet engineering
the results to engineering	specifications for a soil	specifications for a soil
specifications. They interpreted	specimen. They interpreted	specimen. They interpreted
and analyzed the data, but	and analyzed the data, but	and analyzed the data, and
limited the work to	limited the work to	extended the results to make
presentation of results only.	presentation of results only.	engineering recommendations
They did not make engineering	They did not make engineering	for construction.
recommendations for	recommendations for	
construction.	construction.	

CVNG 3140 – Hydraulic Engineering Lab Pump characteristics curves laboratory

1 – Does not meet expectations	2 – Meets expectations	3 – Exceeds expectations			
The student group conducted a pump characteristic curves laboratory experiment; Tw teorveab;sabris					

CVNG 4500 – Capstone Design I Assignment on Design Criteria

Students assembled the design	Students assembled the design	Students assembled the design
criteria list, which include:	criteria list, which include:	criteria list, which include:
constraints, assumptions, laws	constraints, assumptions, laws	constraints, assumptions, laws
and codes. Only a few of the	and codes. Some of the items	and codes. Their senior design
items were considered and was	were not considered. Their	capstone project continued to
not adequate. Their senior	senior design capstone project	include adherence to the design
design capstone project did not	only sometimes adhered to the	criteria and used it effectively
adhere to the design criteria	design criteria and it was not	for the design of the engineered
and it was not consistent in the	consistent in the effective	built system.
design of the engineered built	design of the engineered built	
system.	system.	

CVNG 4500 – Capstone Design I Assignment on Pursuit of External Posources not Typic

Assignment on Pursuit of External Resources not Typically Taught in Classes

Students did not assemble a list of the resources that they were to pursue for senior design capstone class. However, they did not contact profes (e)-6 (n)EMC ee{t)-6 (o)-9-143.52 484.2 0.4810r.8 (s)-1.3 (i3-4.5 ()]J-0.004 Tc 0.006-9-143.w 0 -1.2484.9 (

CVNG 3110 – Transportation Engineering Combined homework assignment on pavement design and long-range transportation planning

1 – Does not meet expectations	2 – Meets expectations	3 – Exceeds expectations	
Student was not able to identify			
the process of roadway			
infrastructure design (i.e. long			

CVNG 3150 – Introduction to Structural Design		
Exam question focused on design of columns		

	3 – Exceeds expectations
Calculated the slenderness	Calculated the slenderness
ratio(s) incorrectly (e.g. wrong K	ratios correctly for the x-axis
value or units error), but	and the y-axis.
calculated the design strength	
of the column correctly based	
on the controlling ratio or	
correctly used Table 4-1a to	Calculated the design strength
determine the design strength	of the column correctly based
based on effective lengths.	on the controlling slenderness
-	ratio or used Table 4-1a to
	determine the design strength.
	value or units error), but calculated the design strength of the column correctly based on the controlling ratio or correctly used Table 4-1a to determine the design strength

CVNG 4510 – Capstone Design II Capstone Final Design

The design project as seen on and the report plansandd specifications do not show malTc mc comb.2 (o)6m

CVNG 3040 – Sustainability and Environmental Engineering Homework Problem on Climate Change

1 – Does not meet expectations	2 – Meets expectations	3 – Exceeds expectations
Did not sufficiently list or	Listed and somewhat described	
describe three means that	three means that society may	
society may use to	use to sequestration carbon	
sequestration carbon dioxide to	dioxide to inhibit climate	
inhibit climate change.	change. Properly described the	
	major negative impact or	
	impacts for each carbon	
	sequestration method.	
Did not sufficiently describe the		
major negative impact or		
impacts for each carbon		
sequestration method.		

Template Updated June 2020 2

.

When asked the play the role of a project manager on construction project, the student was able to explain "Safety". However, it struggles differentiating form different roles (Owner, Engineer, or