

Program-Level Assessment: Annual Report

bold

2. Assessment Methods: Artifacts of Student Learning

3.

PLO 3 - Application of Theory, Systems, and Software Development Fundamentals

Outcomes

Graduates of the program will have an ability to...

BA-CS, BS-CS, MS-CS

Application of Computer Systems Fundamentals

Criterion	4: Exemplary	3: Accomplished	2: Developing	1: Beginning
Program Execution	Student can critically eval- uate execution management strategies in real contexts and adapt or create new strate- gies to accomplish or optimize system goals.	Student can implement or describe a concrete imple- mentation of di erent code ex- ecution strategies to achieve de- sired system-level outcomes.	Student can reason about how and when a system ex- ecutes code to accomplish its goals. Students can compare and contrast di erent systems and explain why they manage code execution di erently.	Student can describe how programs, processes, threads tasklets, or other runnable cod is executed on hardware i an abstract, idealized manner Student can describe mecha nisms and algorithms that man age computing time as a re source.
Memory and Data Mangement	Student can critically evalu- ate data management strate- gies in real contexts and adapt or create new strategies to accomplish or optimize system goals.	Student can implement or describe a concrete im- plementation of di erent data management strategies to achieve desired system-level outcomes.	Student can reason about how a system manages data storage and movement to ac- complish its goals. Students can compare and contrast di erent systems and explain why they manage data di er- ently.	Student can describe how dat management systems (memory cache, databases, etc.) function in an abstract, idealized mar ner. Student can describe how computer data is managed as resource.
Networking	Student can critically eval- uate networking strategies in real contexts and adapt or create new strategies to ac- complish or optimize system goals.	Student can implement or describe a concrete imple- mentation of di erent net- worked communication strate- gies to achieve desired system- level outcomes.	Student can reason about how distributed systems use communication to accomplish their goals. Student can com- pare and contrast di erent systems and explain why they manage communication di er- ently.	Student can describe how ne work hardware and software of erates in an abstract, idealize manner. Student can describ protocols and algorithms that manage the transfer of informa- tion between systems.
Security				

Notes on the above rubric

- This learning outcome evaluates the students' process of applying learned knowledge and skills to a speci c problem, not necessarily the speci c skills and learned knowledge itself.
- PLO3 is a broad learning outcome that applies to many courses. This rubric attempts to be general enough so that elements may
 be applicable to any course covered under PLO3. It is not intended to be specild to the Computer Systems courses. For example,
 the Algorithms course could incorporate elements of "Program Execution" by analyzing an algorithm's Big-O running time under two
 models: one where a single instruction occurs per time step (sequential execution) versus another where all possible instructions occur
 per time step (in nitely parallel execution). Or, the Algorithms course could incorporate elements of "Memory and Data Management"
 by discussing working-set-size and in-cache versus out-of-cache algorithms or in-core and out-of-core algorithms.
- This rubric attempts to hit Computer Systems concerns at a high and low level. For "Memory and Data Management" a programming
 course may talk about how the Java garbage collector manages memory, an architecture course may talk about how the CPU cache interacts
 with memory, an OS course may talk about virtual memory and paging, a database course may talk about database organization, and a
 security course may talk about where data is encrypted and decrypted.
- In many courses these four dimensions of computer systems will interrelate to one another, even if there are apparently one or two primary dimensions. For example, a networking or distributed systems course might talk about e ciently distributing computation and data storage across client and server, subject to the security concerns of who is trusted to do what kinds of operations.

Application of Software Development Fundamentals

Criterion	4: Exemplary	3: Accomplished	2: Developing	1: Beginning
Team and Work	Student can critically eval- uate software development			
Organization	strategies in real contexts and adapt or create new strate-			